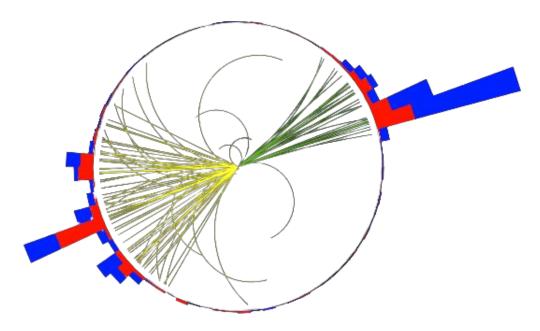
Calibration and Correlation: Learning Uncertainties the Frequentist Way

Rikab Gambhir In collaboration with Jesse Thaler & Ben Nachman ML4Jets, July 7 2021

Outline

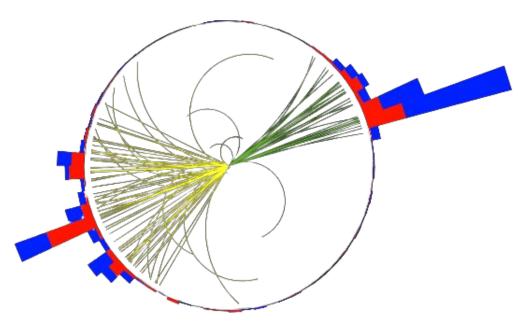
- 1. Motivation and Theory
 - a. Mutual Information
 - b. Frequentist Inference
- 2. Machine Learning Framework
 - a. Machine Learning Algorithm
 - b. Gaussian Ansatz
 - c. Inference and uncertainties
- 3. Jet Energy Calibration



[CMS, 2004.08262]

Outline

- 1. Motivation and Theory
 - a. Mutual Information
 - b. Frequentist Inference
- 2. Machine Learning Framework
 - a. Machine Learning Algorithm
 - b. Gaussian Ansatz
 - c. Inference and **uncertainties**
- 3. Jet Energy Calibration



Learn frequentist uncertainties directly and in one training, and quantify correlations!

Motivation and Theory

Given data samples of two random variables, **X** and **Y**, we can ask the following questions about them:

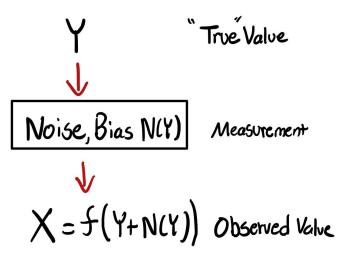
- 1. Given a sample *x*, can we predict *y*, *with uncertainties*?
- 2. Precisely how correlated are *X* and *Y*?

Given data samples of two random variables, **X** and **Y**, we can ask the following questions about them:

- 1. Given a sample *x*, can we predict *y*, *with uncertainties*?
- Precisely how correlated are X and Y?

In the context of calibration, we would like to do this in a **frequentist** way!

Calibration.



Given data samples of two random variables, **X** and **Y**, we can ask the following questions about them:

- Given a sample *x*, can we predict *y*, *with uncertainties*?
- 2. Precisely how correlated are *X* and *Y*?

Frequentist inference: Find and characterize p(x|y)**Mutual Information**: Calculate I(X;Y)

Given data samples of two random variables, **X** and **Y**, we can ask the following questions about them:

- Given a sample *x*, can we predict *y*, *with uncertainties*?
- 2. Precisely how correlated are *X* and *Y*?

Frequentist inference: Find and characterize p(x|y)**Mutual Information**: Calculate I(X;Y)

We can answer both questions at the same time, only looking at the data once!

Given data samples of two random variables, **X** and **Y**, we can ask the following questions about them:

- Given a sample *x*, can we predict *y*, *with uncertainties*?
- 2. Precisely how correlated are *X* and *Y*?

Rich existing literature!

Simulation based inference & Uncertainty Estimation:

[Cranmer, Brehmer, Louppe 1911.01429; Alaa, van der Schaar 2006.13707; Abdar et. al, 2011.06225; Tagasovska, Lopez-Paz, 1811.00908; And many more!]

Bayesian techniques:

[Jospit et. al, 2007.06823; Wang, Yeung 1604.01662; Izmailov et. al, 1907.07504; Mitos, Mac Namee, 1912.1530; And many more!]

We can answer both questions at the same time, only looking at the data once!

Mutual information

A measure for non-linear interdependence is the Mutual Information:

$$T(X;Y) = \sum_{x \in \Omega_{x,y} \in \Omega_{Y}} p(x,y) \log\left(\frac{p(x,y)}{p(x)ply}\right)$$

Answers the question: How much information, in terms of bits, do you learn about Y when you measure X (or vice versa)?

Can be written as the well-known **KL-Divergence**:

$$I(X;Y) = D_{KL}(P(x,y) || P(x)P(y))$$

where $D_{KL}(P(Q)) = \int du P(u) \log(\frac{P(u)}{Q(u)})$

The Donsker-Varadhan Representation

We can write the KL-Divergence in the **Donsker-Varadhan Representation**:

$$\begin{split} \mathbb{I}(X,Y) &\geq -\inf_{T_{\theta}\in\mathcal{T}}\mathbb{I}[T_{\theta}]\\ \text{where } \mathbb{L}[T] &= -\left\{\mathbb{E}_{p(x,y)}[T(x,y)] - \log(\mathbb{E}_{p(x)p(y)}[e^{T(x,y)}])\right\} \end{split}$$

If the class of parameterized functions \mathscr{T} is expressive enough, the bound will be saturated.

<u>Goal</u>: Find the *T* minimizing this loss functional!

*Other representations, such as those based on *f-divergences*, have also been tried, but suffer convergence issues

[Belghazi, Baratin, Rajeswar, Ozair, Bengio, Courville, Hjelm, 1801.04062; Le, Nguyen, Phung, 1711.01744 Nowozin; Cseke, 1606.00709]

Estimating Likelihoods

The bound is saturated for the learned function (Well-known!):

$$T_{\Theta}(x_{jy}) = \log\left(\frac{p(x_{ly})}{p(x)}\right) + 1$$

This contains the **likelihood**! So we can perform maximum likelihood inference (Assuming the network is well trained!):

$$\hat{y}(x) = \underset{y \in \Omega_Y}{\operatorname{argmax}} \overline{T_{\theta}(x,y)}$$

Estimating Uncertainties

Standard Uncertainty contours given by:

$$\int_{10^{-1}} f(x) = \{ x_{y} \mid T(x_{y}) = T(x_{y}, \hat{y}(x)) - \frac{1}{2} \}$$

Estimating Uncertainties

Uncertainty contours given by:

$$\int_{10^{-1}} f(x) = \{ y \mid T(x,y) = T(x, y|x) \} - \frac{1}{2} \}$$

Too hard! Settle for Gaussian error bars:

$$COV_{\gamma}(x) = -\left| \left(\frac{d^2 T(x, y)}{dy; dy_i} \right)^{-1} \right|_{\gamma} = \hat{\gamma}_{\gamma}(x)$$

Estimating Uncertainties

Uncertainty contours given by:

$$\int_{10^{-1}} f(x) = \{ x_{y} | T(x_{y}) = T(x_{y}, \hat{y}(x)) - \frac{1}{2} \}$$

Too hard! Settle for Gaussian error bars:

$$COV_{\gamma}(x) = -1\left(\frac{d^2 T(x,y)}{dy; dy_i}\right)^{-1}|_{y=\hat{y}(x)}$$

<u>Goal</u>: Extract this value (without any extra work)!

Framework

Maximum Likelihood

For a measurement *X*, what was the *Y* most likely to have produced it? Inherently independent of the prior for *Y* - the **calibration** task

We can also extract Gaussian uncertainties given by

$$COV_{\gamma}(\mathbf{x}) = -I\left(\frac{d^2 T(\mathbf{x}_1 \mathbf{y})}{d\mathbf{y}_i d\mathbf{y}_i}\right)^{-1} \Big|_{\mathbf{y}} = \operatorname{argmax}_{\mathrm{yeav}} \xi_{T(\mathbf{x}_1 \mathbf{y})} \xi$$

Technically, we can calculate these from our trained network *T*. But finding maxima and derivatives* is extremely hard!

^{*}If you use the ReLU activation function, all second derivatives are zero.

The Gaussian Ansatz

Parameterize T(x,y) in the following way (the **Gaussian Ansatz**):

$$T(x,y) = A(x) + (y - B(x)) \cdot D(x) + \frac{1}{2}(y - B(x)) \cdot C(x,y) \cdot (y - B(x))$$

where

- $A: \Omega_X \rightarrow \mathbb{R}$
- $B: \Omega_X \to \mathbb{R}^{\dim(\Omega_Y)}$
- $C: \Omega_X \times \Omega_Y \rightarrow Sym(\mathbb{R}, \dim(\Omega_Y))$ $D: \Omega_X \rightarrow \mathbb{R}^{\dim(\Omega_Y)}$

 - Are parameterized functions

The Gaussian Ansatz

$$T(x,y) = A(x) + (y-B(x)) \cdot D(x) + \frac{1}{2}(y-B(x)) \cdot C(x,y) \cdot (y-B(x))$$

This ansatz is fully expressive: any smooth function of *X* and *Y* can be written in this form! The networks *A*, *B*, *C*, and *D* are all learned functions.

If we take the limit $D \rightarrow 0$ (forced during training), then we can see:

$$\hat{\mathcal{M}}(\mathbf{x}) = \frac{\arg\max}{\mathcal{M} \in \Omega_{Y}} \frac{1}{(\mathbf{x}, \mathbf{y})} = \frac{B(\mathbf{x})}{B(\mathbf{x})}$$
$$= -1\left(\frac{d^{2}T(\mathbf{x}, \mathbf{y})}{d\mathbf{y}; d\mathbf{y};}\right)^{-1}|_{\mathbf{y} \in \hat{\mathbf{y}}(\mathbf{x})} = \frac{-C^{-1}(\mathbf{x}, B(\mathbf{x}))}{-C^{-1}(\mathbf{x}, B(\mathbf{x}))}$$

The maximum likelihood solution for Y given X, plus its uncertainty, are manifest in the Gaussian Ansatz! No need for difficult maximization problems

Example Calibration Problem

Premise: A noisy voltmeter

The "true" voltage *Y* is a random number given by P(y) = U(-5,5) *

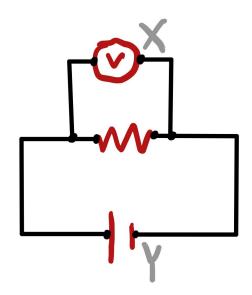
The voltmeter adds Gaussian noise N with a standard deviation of 1 Volt: Observe X = Y + N

Given the observation *X*, what was *Y* and its uncertainty?

Expect to learn the likelihood P(x|y) = Norm(y, 1)

Inherently frequentist!

*Technically, I don't need to tell you P(x) or P(y) because of prior independence!



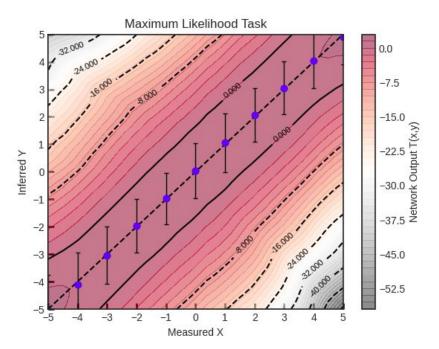
Example Calibration Problem

Model:

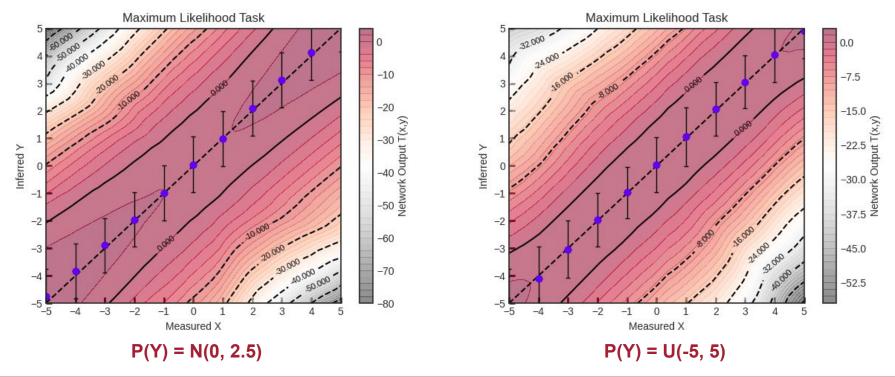
- The A, B, C, and D networks are each Dense networks with 4 layers of size 32
- ReLU activations
- All parameters have an L2 regularization
 (λ = 1e-6)
- The D network output has an L1 regularization (λ = 1e-4)

Learned mutual information of 1.05 natural bits

Reproduces the expected maximum likelihood outcome and the correct resolution!



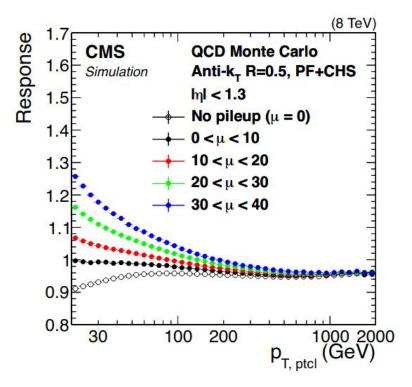
Example Calibration Problem - Prior Independence



Jet Energy Calibrations

Measure a set particle flow candidates X in the detector. What is the underlying jet p_T , Y, and its uncertainty?

Define the jet energy scale (JES) and jet energy resolution (JER) as the ratio of the underlying jet p_{τ} (resolution) to the measured total jet

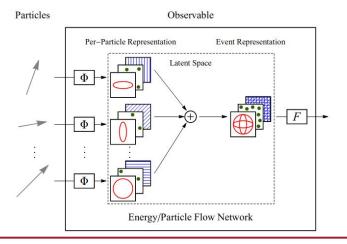


[CMS, 1607.03663]

 p_{τ}

Models

- **DNN**: $X = (\text{Jet } p_{\tau}, \text{Jet } \eta, \text{Jet } \varphi)$, Dense Neural Network
- EFN: $X = \{(PFC \rho_{\tau}, PFC \eta, PFC \phi)\}, Energy Flow Network$
- **PFN**: $X = \{(PFC p_{\tau}, PFC \eta, PFC \phi)\}, Particle Flow Network$
- **PFN-PID**: $X = \{(PFC p_{\tau}, PFC \eta, PFC \phi, PFC PID)\}, Particle Flow Network \}$



Permutation-invariant function of point clouds For EFN's, manifest IRC Safety

All models use ReLU activations with the Adam optimizer (α = 1e-3). Model parameters have an L2 regularization (λ = 1e-6), and the *D* network output has an L1 regularization (λ = 1e-4)

[Komise, Metodiev, Thaler, 1810.05165]

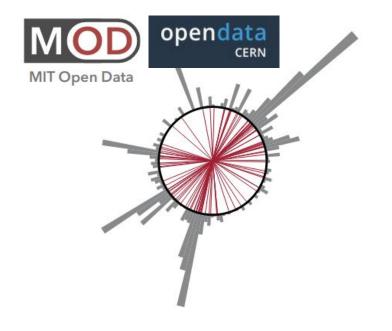
Rikab Gambhir

[Komiske, Mastandrea, Metodiev, Naik, Thaler, PRD 2020; Larkoski, Marzani, Thaler, Tripathee, Xue, 1704.05066; Cacciari, Salam, Soyez, 0802.1189; http://opendata.cern.ch/]

Jet Dataset

Using CMS Open Data:

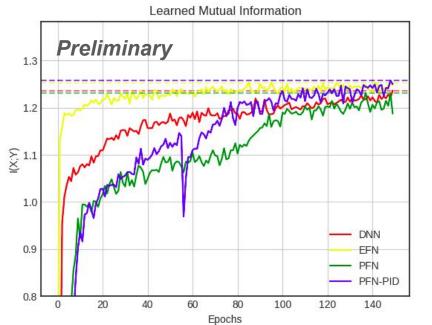
- CMS2011AJets Collection, SIM/GEN QCD Jets (AK 0.5)
- Select for jets with 500 GeV < Gen p_T < 1000 GeV, $|\eta|$ < 2.4, quality \ge 2
- Select for jets with \leq 150 particles
- Jets are rotated such that jet axis is centered at (0,0)
- Train on 100k jets



Mutual Information

Model	I(X;Y) [Natural Bits]
DNN	1.23
EFN	1.25
PFN	1.25
PFN-PID	1.27

Preliminary

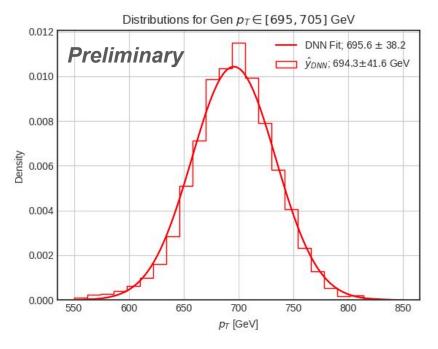


Rikab Gambhir

Jet Energy Scales

For jets with a true p_{τ} of 700 GeV, we should expect well-trained models to predict 700 GeV on average!

Model	Gaussian Fit [GeV]
DNN	695 ± 38.2
EFN	692 ± 37.7
PFN	702 ± 37.4
PFN-PID	693 ± 35.9
CMS Open Data	695 ± 37.4



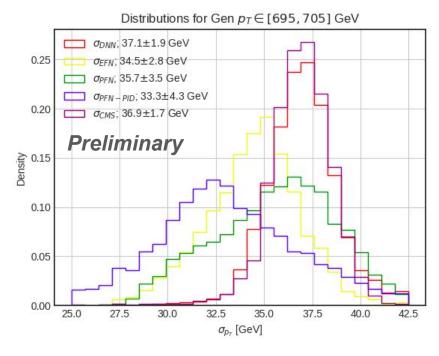
DNN \hat{y} distribution for $y \in [695, 705]$ GeV

Preliminary

Jet Energy Resolution

Predicted uncertainty distributions for the different models - The higher the learned mutual information, the better the resolution!

Model	Avg Resolution [GeV]
DNN	37.1 ± 1.9
EFN	34.5 ± 2.8
PFN	35.7 ± 3.5
PFN-PID	33.3 ± 4.3
CMS Open Data	36.9 ± 1.7



Uncertainty distribution for $y \in [695, 705]$ GeV

Preliminary

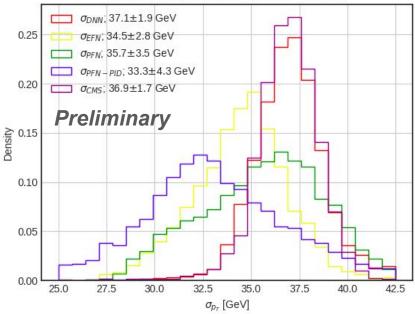
Rikab Gambhir

Conclusion

We have presented a framework useful for (all at the same time!):

- Estimating **mutual information**, a measure of the nonlinear interdependence between random variables
- Performing **frequentist** maximum likelihood inference for *Y* given *X*
- Estimating the **uncertainty** on *Y* for said inference
- Moreover, the Gaussian Ansatz makes the above manifest

Given nothing but example (x, y) pairs, in a single training. All of these tasks are useful in high energy physics, such as for jet energy calibration!



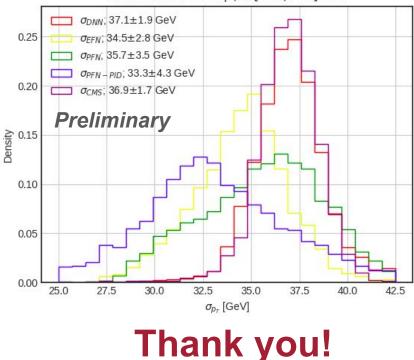
Distributions for Gen $p_T \in [695, 705]$ GeV

Conclusion

We have presented a framework useful for (all at the same time!):

- Estimating **mutual information**, a measure of the nonlinear interdependence between random variables
- Performing **frequentist** maximum likelihood inference for *Y* given *X*
- Estimating the **uncertainty** on *Y* for said inference
- Moreover, the Gaussian Ansatz makes the above manifest

Given nothing but example (x, y) pairs, in a single training. All of these tasks are useful in high energy physics, such as for jet energy calibration!



Distributions for Gen $p_T \in [695, 705]$ GeV

Appendices

Algorithm

Initialize a parameterized function $T_{\rho}(x,y)$

- 1. Draw *b* batch samples from P(X, Y): { $(x_1, y_1) \dots (x_b, y_b)$ }
- 2. Draw *b* batch samples from P(Y): $\{y_1', \dots, y_b'\}$
- 3. Compute the loss $L(\{\theta\}) = -1/b \sum [T_{\theta}(x,y)] + log(\sum [e^{T\theta(x,y')}])$
- 4. Update weights $\theta' = \theta \nabla_{\theta} L(\{\theta\})$ (or use your favorite optimizer!)

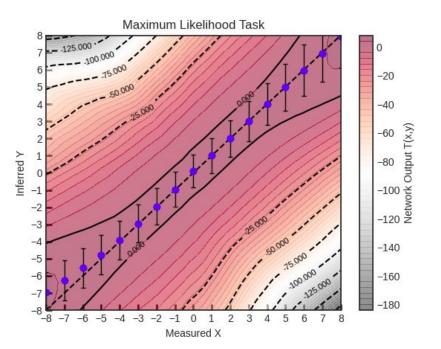
When converged, -L will be a lower bound for I(X;Y), and T will contain the likelihood

Outside Uniform Prior

Prior is still U(-5, 5), extrapolate anyways

Same maximum likelihood result

Larger errors due to limited statistics



Ensembles

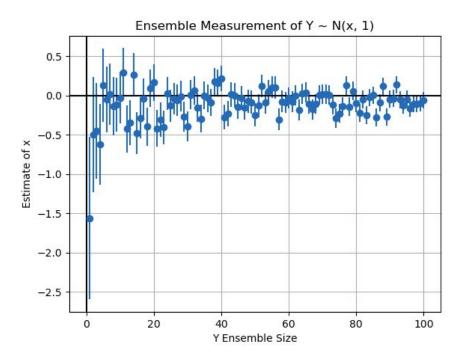
Once we have a procedure for estimating the maximum likelihood *Y* for a measured *X*, can extend to estimating a model parameter θ given *N* data *I.I.D.* points X_i - the **unfolding** problem.

$$Tf = \frac{1}{2} C(x_{i}y) \text{ is small}:$$

$$\hat{\Theta}(\{x\}) = \left[\sum_{i} C(x_{i}, B(x_{i}))\right]^{-1} \sum_{i} C(x_{i}, B(x_{i}))$$

$$cov_{\hat{\Theta}}(\{x\}) = \left[\sum_{i} C(x_{i}, B(x_{i}))\right]^{-1}$$

Could potentially use this to *directly* estimate Lagrangian parameters from data!



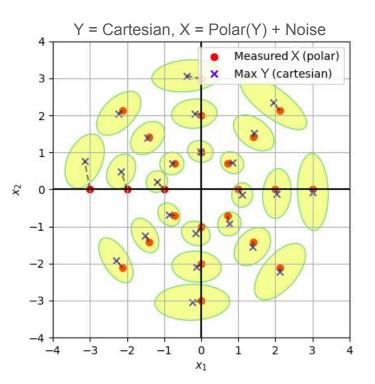
Multi Dimensional Test

Polar Coordinates Conversion

- Y = Uniform((-4,-4) , (-4, 4)
- $X = (r, \phi) + (N(0, 0.25), N(0, \pi/12))$

 ϕ is in the coordinate patch (- $\pi,\,\pi)$

Explains the weirdness near $\boldsymbol{\pi}$



Convergence Test

Simple X = Y + Gaussian Noise example

10 trials

- Red: DV Loss
- Green: F-Divergence Loss
- Yellow: F-Divergence + regularization

Whenever the green or yellow blow up (more accurately, blow down), set the MI to 0.0 because that is the best bound.

